
Dr. Kevin Mills

Dr. Jean Scholtz

Enable mobile workers to use multiple devices in different work places for different tasks.

New Capabilities

- Critical information follows users moving among locations
- System dynamically composes suitable multi-device, multi-mode interfaces as users move among locations
- Information adjusts interaction and presentation to devices available at each location

Integrating people with physical spaces and information spaces

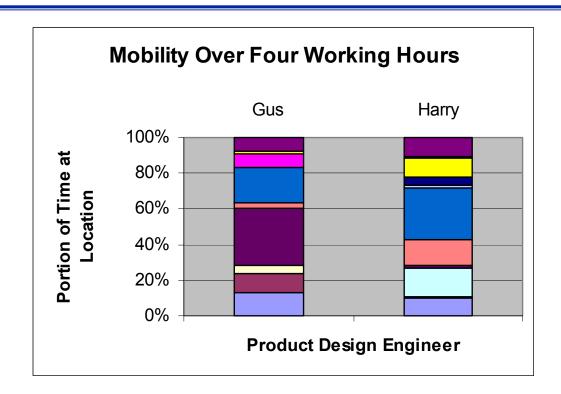
People work and live on the move

Rescue Workers

Police Officers

Doctors

Factory Workers



Soldiers

Sailors

CIO for a major airline notes that 85-90% of the airline's workers are mobile information workers who spend most of their time away from their "designated" work place.

In How Many Locations?

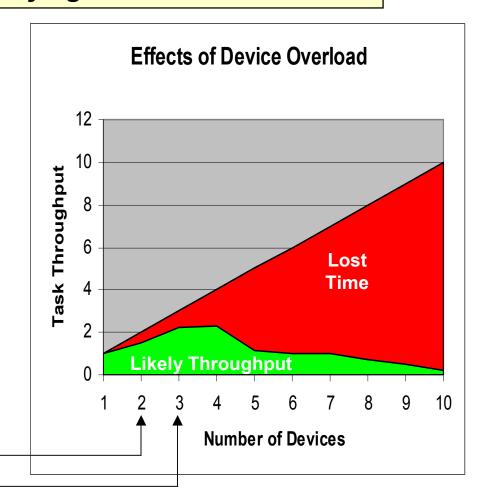
Source: Bellotti and Bly study of distributed collaboration in a product design team, <u>Proceedings CSCW 96</u>.

- 10-13% of work completed at desktop
- 76-82% of work spread between 11 other locations
- 8-11% of time spent moving between locations

How do people on the go interact with information today?

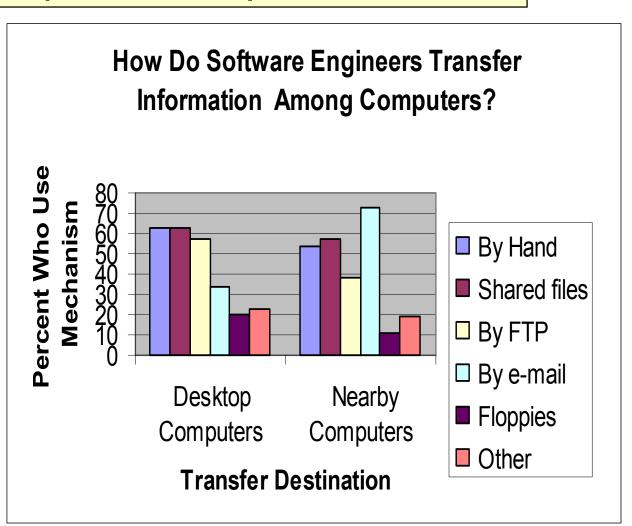
Growing population of portable, embedded, wearable computing devices, each specialized for particular tasks, but

- User interacts with each device independently
- Many applications are vertically integrated with devices
- User must track, convert, and transfer information across devices


Device overload will swamp the user, even in the absence of underlying information overload.

- Which device(s) should I use here and now?
- Where is the information I need?
- How do I get the information to the right device and in right format?

Where will most users be on this curve?


Average Savvy Professional Geek and Nerd

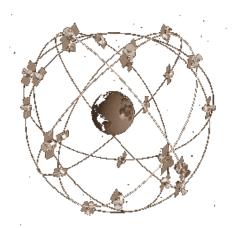
More Computers, More Unproductive Time

- Computers on desktop: 54%= 3; 39%= 2; 7% =1
- Transfer data between desktop computers: 70% very often and 25% often
- Transfer data between nearby computers:
 28% very often; 23% often; 36% sometimes

Source: Jun Rekimoto, study of software engineers <u>Proceedings of the ACM Symposium on User Interface Software Technology</u> (UIST), 1997

Two Things Have Changed

1. Networking-capable PDAs, Sensors, and Devices


2. Location-aware Devices

GPS, Cell Phones, Active Badges

DARPA can exploit this changing situation by developing software solutions to three hard problems:

- 1 Coordinating interactions across tens of heterogeneous devices and between seven to ten modes
- 2 Managing information mobility on a geographically significant scale
- 3 Adapting information delivery using knowledge of people, places, and devices

Smart Spaces to GoCoordinating Interactions

New Idea: Poly-Device, Poly-Modal Interface

A distributed coordination bus that:

- shares interaction events among networked groups of devices
- dynamically composes interfaces optimized for tasks, modalities, and devices

Decentralized Approach

Multicast Event Bus Announce/Listen Protocols Squawking Discovery Protocols

MASH - UCB Visage-Link

Federated Approach

Reflector Event Bus Subscribe/Listen Protocols Push Discovery Protocols

> Habanero -NCSA Orbit MAW

Centralized Approach

Bulletin Board Server Registration Protocols Query Discovery Protocols

DISCIPLE - Rutgers
Java Beans
Jini

Head Trackers

A/V Switches

Desktops Projectors Light Switches Notebooks Pens Smart Cards Tens of Devices Large Screen Displays Cross Pads Active Badges Head-worn Displays Pointers Speakers Eye Trackers Cell Phones iButtons Cameras **Motion Sensors Microphones Bar Code Scanners**

PDAs

Seven to Ten Interaction Modes

Visual Display

Audio Output

Speech Input

Keyboard Input

Gaze Input

Gesture Input

Mouse Input

Pen Input

Touch Input

Haptic Output

Our Approach?

Managing Information Mobility

New Idea: Active Information

Systems of mobile, replicable objects that communicate as groups to:

- track location, state, and trajectory of information
- track location, state, and trajectory of users
- plan information movement and replication

Multicast Tracking

Context Dependent Routing Bi-directional Device Beaconing With Intelligent Buttons

BARWAN -UCB Active Services

Geographical Tracking

Location Dependent Routing Query Global Positioning With Smart Cards

> Infostation - Rutgers Stanford Open Market

Identity-Based Tracking

Address-based Routing
Query Active Badges
With Speaker Identification

Piconet - ORL BBN

Adapting Information Delivery

New Idea: Inter-Space

Couple sensor data with resource and scene description languages to model physical and logical space, so that software can:

- exploit location, proximity, visibility of resources to determine delivery devices
- adapt presentation to characteristics of available devices and services

Device-Based Modeling

Embedded Device Descriptions
Device Description Diffusion
Proxy-based Transcoding

MASH -UCB
Active Services

Image-Based Modeling

Physical Model Construction Image Sensor Mapping Visibility Algorithms

City Scanning - MIT
Building Scanning - UCB

Graph-Based Modeling

Installable Descriptions
Wizard-Configured Maps
Graph-based Algorithms

Jini - Sun Active Directory - MS

What difference?

Increased Information Availability

Responding to Emergencies

Saving Lives

In the Assault

On the Flight-Line

